If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+4y-48=0
a = 1; b = 4; c = -48;
Δ = b2-4ac
Δ = 42-4·1·(-48)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{13}}{2*1}=\frac{-4-4\sqrt{13}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{13}}{2*1}=\frac{-4+4\sqrt{13}}{2} $
| 39=^13/10b | | 2(x+1)-3=-13 | | n3=2000 | | -2r²-7=-31 | | 12y-100=9y+20 | | 1.5x^2+2.5x-1000=0 | | x^2•x^-1=0 | | x^2•x^-1=0 | | 3^(-3x)=1/27 | | 10f+f=5(+) | | n+17=93 | | 7m−11=17 | | 2x(3x9)=(2x)x9= | | 2^2x=1/32 | | Z=16-30u | | F(4)=x-11 | | 5000+(5000x200)=C | | 31-(2c+4)=(c+6)+c | | 6x^2+24,84=0 | | (2x-7)+(7x+5)+(8+x)=N | | Y+150-x+x=180 | | 4x1+10x2=1002x1+x2=223x+3x2=39 | | 7X1+2x2=804x1+2x2=723x1+3x3=60 | | 5a+2=3a-6 | | 6x-18x=50-4 | | (4x)-15=25 | | 6x+46=4x+52 | | 5w2+540=0 | | 6x+46=52 | | b-35=57 | | 7x^2-112=07x2−112=0 | | 6a−1=a+3 |